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It is the purpose of this report to extend the use of quasi-static
range finitely conducting earth-image theory techniques to the nearfield
and farfield ranges. Simple engineering expressions for horizontal
electric and magnetic dipole antennas have been derived for the air-to-air,
subsurface-to-air, air-to-subsurface, and subsurface-to-subsurface propaga-
tion cases. These expressions have been compared with previously derived
analytical (or numerical integration) results. For the air-to-air propaga-
tion case, the image-theory exressionsare valid from the Quasi-statice
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1 2. (Cont'd)

to the farfield ranges, as long as the square of the index of refraction
is large and the Somnerfeld numerical distance is small. For the sub-
surface-to-air, air-to-subsurface, and subsurface-to-subsurface propagation
cases, the additional restriction that the measurement distance be greater
than three times the burial depth of the source and/or receiver must be
met.
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IMAGE-THEORY ELECTROMAGNETIC FIELDS OF HORIZONTAL DIPOLEANTENNAS IN PRESENCE OF CONDUCTING HALF-SPACE

INTRODUCTION

During the past several years, finitely conducting earth-image theory
techniques have proved quite useful in determining the quasi-static fields of
antennas located near the earth's surface for both single-layered and multi-
layered earths. (For detailed references, see Bannister. 1 ,2 ) The quasi-static
range is defined as that range where the measurement distance is much less than
a free-space wavelength.

Physically, the essence of the quasi-static range finitely conducting
earth-image theory technique is to replace the finitely conducting earth by a
perfectly conducting earth located at the (complex) depth d/2, where d = 2/y,

and y1 = [iWU 0(al + iIel)]I/2 is the propagation constant in the earth. (See
figure 1 for the image-theory geometry.) Analytically, this corresponds to
replacing the algebraic "reflection coefficient," (u1 - X)/(Ul + X), in the
exact integral expressions by exp(-Xd), where X is the variable of integra-
tion.3 For antennas located at or above the earth's surface, the general
image-theory approximation is valid throughout the quasi-static range.1,2

RECEIVER

SOURCEo

h 7 AIR

V 
EARTH 

'""

IMAGE.

Figure 1. Image-Theory Geometry
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The major disadvantage of the finitely conducting earth-image theory
technique is that mainly it has been applied only in the quasi-static range.
However, because this range includes the critical launching area, one would
expect to be able to extend it into the intermediate range where the principal
field propagation proceeds as though it were over a perfectly conducting plane.

Recently 2 ,4 we have shown, for horizontally polarized sources, that 6

finitely conducting earth-image theory techniques are not limited to the qua-
si-static range alone. That is, by replacing the horizontally polarized
algebraic "reflection coefficient," (u1 - u,)/(ul + uo), by exp(-uod), we
demonstrated that finitely conducting earth-image theory techniques can be
utilized at any range from the source. Mohsen5 has validated and extended
these results to include higher order terms that correspond to multiple images
at the same location. Mahmoud and Metwally,6 employing discrete and discrete-
plus-continuous images, have computed satisfactorily the change in the input
impedance of a vertical magnetic dipole (VMD) due to the presence of the earth.

It is the purpose of this report to show that nearfield and farfield
range finitely conducting earth-image theory techniques also can be employed
for determining the fields produced by horizontal electric dipole (HED) and
horizontal magnetic dipole (HMD) antennas (which are a combination of verti-
cally and horizontally polarized sources).

In this report, the HED and HMD are situated at height h with respect to
a cylindrical coordinate system (p, ,z) and are assumed to carry a constant
current I. The HED (of infinitesimal length Z) is oriented in the x direction
while the axis of the HMD (of infinitesimal area A) is oriented in the y
direction. The earth, which is assumed to be a homogeneous medium with con-
ductivity a1 and dielectric constant £I(= crco), occupies the lower half-space
(z < 0) and the air occupies the upper half-space (z > 0). The magnetic per-
meability of the earth is assumed to equal p., the permeability of free space.
Meter-kilogram-second (MKS) units are employed and a suppressed time factor of
exp(iwt) is assumed.

LOCATION OF IMAGE DEPTH

Basic antenna theory tells us that the fields produced by a current-car-
rying wire of any length, when placed over a perfectly conducting earth, can
be represented by the combined fields of the wire and its image. 7 If the
finitely conducting earth could be replaced with a perfectly conducting earth
at some specified depth below the surface of the finitely conducting earth,
we then could use standard image theory to locate the antenna image and the
resulting fields.

Several methods are available for deriving the depth of a perfectly con-
ducting plane that can be used to replace a finitely conducting earth. One of
the most general methods8 is to equate the wave impedances for grazing inci-
dence at the surface (z = 0) for the two cases shown in figure 2.

2
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CASE A CASE B[

AIR AIR ____

FINITELY CONDUCTING EARTH AIR Z1

...............I.I.I.I.I.I......................... I . ..................

PERFECTLY CONDUCTING EARTH

Figure 2. Replacement of a Finitely Conducting Earth With a
Perfectly Conducting Earth at Depth z1

For case A, for transverse electric (TE) propagation,

where y
2  =2 iwu 1  Yo and

a W 1 e'op Y2  00 iwe1),an

=n ' (2)
For case B, we can write

z no tanh(yoz1 ) ,(3)

where no = Ioe - 1207r

For small values of z1 (i.e., jy~zjf < 0.5), tanh(yoz1 ) -yoz 1, and

ZB - n~yz iajij z1  (4)

Equating the two impedances results in

zi - 1 F77 1  ~.(5)

I -.. 1oy3
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Since the image depth is equal to 2z,, we see that, for TE propagation,

the image depth dTE for a wire on the surface of a finitely conducting earth

can be expressed as

2/Y

dTE - - 2/yn (6)

subject to the condition that IYozI 0.5 (i.e., I n2--il > 2, where n2 =
2/Y2

Y1/ 0).

Similarly, for transverse magnetic (TM) propagation, since

ZA =i4- y0/y2 , (7)

then,

dTM ' - O/2 = V 2 l i/n2(8- Vo/JYi7 , (8)

0y1 Y1

subject to the condition that IyoZiI 1 0.5 (i.e., Jn2/ V T -11 > 2).

For normal incidence, or if'In 21 > 15, equations (6) and (8) reduce to
the well-known resultl,2,3,8

dTE -dTM -d -2 /yl (9)

where y, - i-o for a, >> WEo0 r and y1 " 60wal/ _r + iChoJ o-r for
1 << WeOer.

Another way to determine the finitely conducting earth-image depth is to
compare the results obtained from image theory with known analytical results.
For z = h 0, the HED Hertz vector is exactly equal to9

X I__ (l 2  + - (1 + y1p)e ] (10)x 4ffiwc (Y 2 Y2)o 3 o~ -Y° -i

The image-theory result is

i -p -YoPi
12. e 1 n

x 4iriwe 1) i

where

P= (P2 + d2E)1/2

When Reylp >> 1, equation (10) reduces to

4
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x 4i p3  ( + y0p)e (12)

while equation (11) becomes

fix 47riwt 0p (1 + y0p)e0 (13)

Equating equations (12) and (13) results in

Td T 2 (14)

which is identical to equation (6).

Following Wait and Spies,3 another way to determine the image depth is
to expand the function

f(uo) = eUod(u (15)

in a Taylor series about u0 = 0, resulting in

u I .Uo e - d j+ u2\d/ + • •(16)

where d is given by equation (6).

The introduction of exp(-uod) into the nx integral equation yields an

image at a distance h + d from the earth's surface (see figure 1), while
higher order terms would correspond to multiple images at the same location.

5'6

HED AIR-TO-AIR PROPAGATION

When h and z are > 0, the Sommerfeld integral expressions for the HED
Hertz vector are

9 -I  -

It e12 y JoRo 0 *-y 0 R1 +f(j2uo \ uo z+h)ox)~j (7i i R.(

and

ItCos~ I 2(u, - uo) -u0 (z+h)1z iOSw € ' ., J0 (Xp) XdX ,(18)
z = 4iwe---- 7P~ Y 2u  u2  0

0 f Yju0+ 0 u 1

S

ITe
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where R2 P ( h)2, R p2  (z h)2, U2  A2  y2, and u2  A2 +y

From equations (17) and (18),

eY-R -O Y 2 e -U 0 ( Z +)1Z zCos 3 e-' R e-
~4ritw0  dp eX00 RI +/X .u .(z Xp (19)

0 1J

If y0 Z1 1 < 0.5 (i.e., n 2 - I > 2), which is applicable in most prac-
tical cases (for example, In21 > 81 at all frequencies for the sea/air case),

u - U

ul +u0 e (20)

and

- 2u 1 e- uOd 
(21)u1 + 0 U 1 + U 0

For small Sommerfeld numerical distances (i.e., IYoR I n - l/(2n 3)1

2 1)
2~u +y 2u y2u (22)

Utilization of the identity (u1 - uo)(u 1 + Uo) = y2 yO, equations (21)
and (22), and Sommerfeld's integrallO

= 00e-o h Jo0 (XP)-"d X = ey 0 , (23)
u0  R(

0

results in

Y -yR -yR yR 1  -y R2IZ Le 0 - e- e- 0 - e02
x 41tiwe o F Ro R R1  R2

it fe- Y O R0  e-Y OR2  
(24)

47ritweO F R0 R2

4. ItCos f e- 0 R 0  2 e'tO R1.r ii 0[ 0 -V
(w 0. o, R (25)

IZp cos (1 - (1 YoR4 kmE + YoRo) e R0_T R
-- 4iTiwE: 0 y0R0  R3  2)1 + 1 y R3

0 n

64
- - - - . - i----

. nu 1 u um um m, u lm a=l, n un n
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and

a . Cos (I - l/n2 )  - e e-uD j (X)dX

Ez 4i 0  u0 U 0

(26)

1- cos (I - lln2)f (1 - e -u0  u0 (z+h) )2

0 i 0  u 00

where R2 = + (d + z + h)2.2

Because of the u2 term in the denominator of equation (26), it does not

readily appear that the equation can be expressed in closed form, except for
the quasi-static range (y0 - 0), where equation (26) reduces to

I2 cos o - (z+h)

z 4wriwE e

27)
II cos €(d + z + h)- ( + h)

4e i 0f P RR8 2J

However, if we replace X2 by u2 - y2 , equation (26) can be broken up .nto

four integrals, two of which are of the type

e Jj(AP)dA = 1-e -ke ,(28)

where R2 = p2 + Z2, and two of which are of the type

fe (Xp)dX (29)

0 0

Since
1 2

f J(x)d = I- e" Y OR
!u0 I-. 1 ~ X p, l (30)

0

then

7
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2 U Z e-Y 0 Z Y Y yR
J f )dX e + e-0dz (31)

0 u0 1 z

Inserting equations (28) and (31) into equation (26) results in

It cos ¢(1 - i/n2) (d + z + h) -YOR 2  (z + h)e-YOR1 +1 (32)Hz ~_ 4riwE OP  R2  R I32

where

e-Y OR I [ - dz (33)

When (z + h) >> p, R- (z + h), and R2 - R - d, resulting in

I - e-yOd)e-yO(Z+h) (34)

For IY0dI < 0.5 (i.e., Jn 2 1 > 1S),

I e-y 0(z+h)
I - 0de (35)

Comparing equations (27) and (32), we see that for the quasi-static range
(1yoR 1I << 1), I is negligible compared to the other two terms in equation
(32). Therefore, if we assume from the outset that R I >> Idl, equation (33)
becomes

I - d - Rc , (36)

which is identical to equation (35) when (z + h) >> p.

Therefore, we can approximate the HED Hz vector as

It cos *(1 - 1/n2 ) d + z + h)eYR 2
z 47riwe 0p R2

(z + h)e
-y 0R  yR 

(37)

R1 + Y0de ,

subject to the restriction Jn 2j > 15. This equation should also be valid for

Jn2 l > S if y 0 d is replaced by (1 - e-Yed).

Now, it seems that we have gone to a lot of trouble to derive the last
term of the Rz expression. However, it is this term that yields the vertically
polarized farfield (for small numerical distances) produced by a HED located

8

. - ___
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very near or below the earth's surface. This is the so-called quadripole term
(i.e., the quadripole moment is Ity 0 d = 21Z/n). Because of the close spacing

and opposite sense of the dipole and its image, direct radiation from the
dipole is not the prime mechanism. Rather, the quadripole consisting of ver-
tical conduction currents in the lossy medium representz the prime source. 13

If the first two terms in equation (37) are ignored and z = h = 0, equa-

tion (37) reduces to

S  t *Cos0 yde (38)

z 41riwc 0 P 0

When jy0P ! >> 1,

H --iw0 z It 2 ey2)p 0 (39)
00 ap 27ry 0 0

which is the correct farfield result for small numerical distances when In2j
>> 1.

Since we have now derived expressions for the HED Hertz vector (equations
(24), (25 . and (37)), the fields in air can be obtained from

-.y2-)' + _ * . )

H. . (40)

The 3sulting HED finitely conducting earth-image theory field expressions
for the ai -to-air propagation case are presented in table 1. They are valid
for small numerical distances and In21 > 15. When IyoR 1I << 1, they reduce to

the quasi-static range image-theory results.1 ,2 When IyoR 1 1 >> 1, they reduce
to Norton's14 ,15 farfield results.

These results easily can be extended to a multilayered earth simply by
letting d = (2/y1 )Q, where Q is the familiar plane-wave correction factor

employed to account for the presence of stratification in the earth.16,17

HMD AIR-TO-AIR PROPAGATION

Four of the six HMD expressions valid for h and z > 0 can be obtained
completely from reciprocity consideration (En, E01 Ez, and Hz). The remaining

two can be obtained from Maxwell's equations (Ho and HO). Alternatively, they
can be obtained from

9.!I
... .. - n u-• n -n n |
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Table 1. HED Air-to-Air Propagation Equations.Cos - 2 2 [1 1,[(0-
o _ _ _ _ _ " - v Ro~ • 2 1 e Y[R-

47r 0  R 00 R0

f,-yRo e-yO>.2

(I + -j PY

0 4 i~ 0  R 3 0 [ YR 0

-((1 y0R ) 22 eYR -) 2[20 - oR

I -y0 R0 -yORj
E i n R + -(1 -L(1 + yRR2)e

o47Riw1 (  + yo) R3  n2 " R3
0 0

+ 2 R -
oRe

0 2R I
2

E -h) + 3yR + yR ) YO-O

2 - (z + h) (3 + 3yR1 +

y2YR 2  ydR (z + h)-y]

42 RD3 Y ~ R3 eoR
H 1I sin (d + z + h)_ 1 + (l+yRleYOR2P 4Tr R2 [ 2  R 2  2

Hz 4 t1  ( + ]YoR 1  -Rz0.yR) o o

2 10

O. os *I - .+h) ] -yR - h) z...h
+0R, (1 + 0 e ( 1 + yR )e

1(d + z + h) Y0 R2  (z +. h) e-y0 1 dYOR [ + RiiY2

02j R- p2R, 1  
0J

li i n G2f ~( + Y R 0) + 0yR YR 2
z ~ 7 R3  -(+yR) R310 2 1

10
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H -y2 y sin + iH)
0 QY

(41)

-y 2n cos + x - )

Following the same procedure outlined in the derivation of the HED field
components results in

- y OR0  -yoR
1y IA R 0 + eRI (42)

and

IAp sin @t " YORO -y

3  1 + YR) + R (I + YoR (43)

The resulting HMD finitely conducting earth-image theory field expressions
for the air-to-air propagation case are presented in table 2. They are valid
for In21 > 15 and small numerical distances. When 1y0R11 << 1, they reduce to
the quasi-static range image-theory results.1 ,2 - When jyoR 1j >> 1, they reduce

to Norton's 14' 15 farfield results.

SUBSURFACE-TO-AIR PROPAGATION

The HED and HMD image-theory expressions for the subsurface-to-air propa-
gation case (h < 0, z > 0) can be obtained from the air-to-air propagation
equations (tables I and 2) simply by setting h = 0 and multiplying each expres-
sion by exp(ylh). The resulting equations are presented in tables 3 and 4 and
will be valid 18 for R = Np2 7 > 13hl, jn21 > 15, and small numerical dis-

tances. It should be noted that by following the procedure outlined by Bannis-
ter and Dube, 18 the restriction R > 13hl can become less stringent.

When ly1RI >> I, the HED and HMD subsurface-to-air propagation equations
reduce to the nearfield and farfield range results presented in tables 3.1 and
3.3 of Kraichman19 (see also Bannister 2 ).

AIR-TO-SUBSURFACE PROPAGATION

The HED and HMD image-theory expressions for the air-to-subsurface propa-
gation case (h > 0, z < 0) can be obtained from the air-to-air propagation
equations (tables J and 2) simply by setting z = 0 and multiplying each expres-
sion by exp(ylz). (Both Ez components must also be multiplied by 1/n

2 to

satisfy the boundary conditions.) The resultinequations are presented in
tables 5 and 6 and will be valid 18 for R' = Npl + > 13zl, In21 > 15, and
small numerical distances.

11
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Table 2. HMD Air-to-Air Propagation Equations

I w01A cos 'z - h)(I )e-YOR 0 + (z + h)( l -yR

E 4 R3 (+ yoR0 R ( yoR 1)

l[(d + z + h)o-Y z + h)_-Y0R _ deY0i

p 0 2  -_L - R , + y2p2

iwiu 0IA sin C (d + z + h)[.+ --- (1 + YR) e-YOR 2

47 r2 R 2  
02

fYO dR1 -  ( z + h ) ]  -YR (z - h) -Yo Ro0

S+ + (1 + y R )e

p2R R3  0

iwvl0 IAp cos ( -oReYR

z 4 yR 0 ) R3  + ( 1+ YoR 1 ) R3e
0. 0

H IA sin [ (z h)2]j r1 + YRo) - h)2 e 00

-oR ^-YoR R20R

[.0 .J[ 0

+ 1I[2 3 (d + z + h ] [1 + YO R + y 2 p2 e 2 R 1

R2 2] 0 R 0  R

Hz 4eY0R2 .(- YR 022 2
H A s I + hYe 0 + R

z4 r 05 (3 0 R3 0

0

R 12
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Table 3. HED Subsurface-to-Air Propagation Equations

[2=p2  + Z2, R2  = p2  + (d + Z)2 1.

(y R-y h) -1(1 yR - -. jI* R.i )l

E~ 12 co e/~2
2  - yO(RiR

2i~a * i )R3  JR 2  d2i

I si e-(Y0R-ylh) 
- o CR.-R)1

E 3z sin +, R) + R2  R - Yo
2rc,+ iWE 1)R

3  I 1 YOR d2L1 j

IziwU0  cos se(YR~) - y(Ri-R)

E Rd3 3y + -ygR+2)~

Ii sinrpe- (yRyh [ R

+ p~'( + R y(R- YORi)11
2R4 co0eIdy

-(y 0R-y~h)
H Ii sin .1 0 Rdz222( yR

+ ~ 2 
(d- + z) + + z 0Re

IZ cs e-(yR-y 1 h) y(iR

H lip sinf 4irR1 + y0 R) R ~-14 a )e o
IL 41R1.
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Table 4. HMD Subsurface-to-Air Propagation Equations
[R2 = p 2 + z2 , R? = p2 + (d + z)2 ]

3.

iwj o IA cos -

E 04IAos 0 - (Yo R- Ylh) d(YoR + y2p 2)

2zp2  
+ d+ R -Y0(R i-R)

R2 G + Y0R) -

iw 01IA sin 0 -(yoR-ylh) 2

E dy R - z + (1 + yoR)
4irp 2R 10 R

+ (d + z) __ I1(1 y YRi)] eY(

iE U 0 IAp cos --(Y R-y h)
Ez  - 2,rR 3  (1 + yoR)e 0 1

IA sin 0_-(y 0R-y h) 3z2)(1 + YoR) - 2y2z2  2 2
H 47R 3  /2 2 0

+ (R -yo(Ri-R)

H IA cos -(YOR-Ylh) + y R + 2y2 R2 + (R (I + YRieyo(RiR)
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Table S. HED Air-to-Subsurface=Propagation Equations
p(I2 2 

4. h2, (R')2 =p
2 

+(d + h)2

27 (a +e~ _____RI~ 0 ~ TR

2 2 2(Rt)Z 2 R' -Y0(R-R
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E - 2 snS(YRT-)1 + y R' + 2(' 2 i '- 0(
S 21r (a + iwe I)(R' )3 1 0 d ~lJ

U 2 p c o s o e {o ~ - l i[3 +. 3 y R I + y R P 2

y 2(RI)L4 r R'

2p0 j dR' h + L-d+ h)e -YO(RRI ]

H I-t sin oe(YRlZ (RI /Rt\2 /R\2 1Y(RR'
H1(R) R( d + h)1y ~ 4. 1-. + y RI)e l

+ h(1 + y RI) + ( 2 )(dy 0R' - h)J

IZ cos o_ ___________!v_ RI -yo(RI-R')
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Table 6. HMD Air-to-Subsurface Propagation 
Equations

[(R p2  = 2  + h2 , (R!)
2  = 2  + (d + h)2]

iwvo0IA cos e - (YOR -¥ 1Z )  R' -yo(R!-R')E (d + h)R.--e

P Asn 41rp 2R' i

E@~ 0 ioIA sin Oe- (YoR'-yIz) h

E 2R '  
0dR' - h (1 +y0 R)

t (R,) 2

(i ~ -yo(J°R!-RI)
(d + h)KI[ + P(I + y0 R!)eY(R1)

iWUosIAp (os + -(y0R,-y 1z)

E "3 (1+ YoR')e

z 2rn2 (R I) 3

IA sin e-(yOR '-y z)  3h2 i1 + YoR' - 2y2h2  y2p2
r 41r_(R_) 3 2 (R) 2  0

3(d + y2 2 - 0 1R')]

21- "[~ ~ 0 ' R' 01] I )e
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When IyiR'1 >> 1, the HED and HMD air-to-subsurface propagation equations

reduce to the nearfield range results presented in table 3.5 of Kraichman.19

SUBSURFACE-TO-SUBSURFACE PROPAGATION

The HED and HFID image-theory expressions for the subsurface-to-subsurface
propagation case (h < 0, z < 0) can be obtained from the air-to-air propagation
equations (tables 1 and 2) simply by setting both z and h equal to zero and
multiplying each expression by exp[yl(z + h)]. (Both Ez components must also

be multiplied by 1/n2 = yO/y1 to satisfy the boundary conditions.) The
resulting expressions are presented in tables 7 and 8 and should be valid 18

(for most cases) for p > 3 z + hi, jn2 j > 15, and small numerical distances.
When lY0P1 << 1 and z = h = 0, these expressions reduce to the quasi-static
range surface-to-surface image-theory results.l,2 When Iyipl >> 1, they reduce

to the subsurface-to-subsurface nearfield and farfield range results presented
in tables 3.2 and 3.7 of Kraichman.19

COMPARISON WITH EXACT SOMMERFELD INTEGRATION RESULTS

Mittra et al. 20 have presented some exact Sommerfeld integration results
for the HED 0fHx and nz vectors (i.e., the correction terms to the perfectly

conducting ground solution) for frequencies of 3 to 30 MHz. For their case,
Ri = 10 m, a = tan-l[p/(z + h)] = 100, = 00, and the quantity I0 = Ii/(iweo)
is normalized to unity.

The image-theory solution of Hz is given by equation (37), while 0i is

given by the last two terms of equation (24); that is,

1 0 [eRR e~ 21
ox - Z[ R1  R2 J . (44)

A comparison of the image theory and exact Sommerfeld integration results
for the situation where E r = 40 and a1 = 1 S/m is presented in figure 3. For

this situation, n2 varies from 40 - jlSO at 3 MHz to 40 - j1S at 30 MHz. Since
1n21 > 15, d - d - d = 2/y Note that the agreement between the two solu-

TM TE 1,
tions is excellent.

Presented in figure 4 is a comparison of the image-theory and exact Som-
merfeld integration results for the case where e r = 10 and al = 10-2 S/m. For

this case, n2 varies from 10 - j6 at 3 MIz to 10 jO.6 at 30 MHz. Since
n2 , < 15 and (z + h) >> p, we have replaced yod by 1 - exp(-yod) in the image

theory a z expression (equation (37)). Note that the agreement is excellent
(within I percent for the ox component and very good (within 5 percent) for
the 1z component.

17
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Table 7. flED Subsurface-to-Subsurface Propagation
Equations (p? = p2 + df2)

O- fy~p-y 1 (z~h)) 2 IP

E X Cos T -e 12 + 2yP+ 2 2 2 -e Y (Pi-P

E - sin Oe[ YOP yl(z+h)I o 202[ -Pe-OP
2ir(al + iw,0 Ji* yPi ~(jP]

H Z I Cos [ 0 Y1(Z -h)] +h) + P i)e YO(i + p

It sin e - [ y~p-y 1 (z+h)] + 2-Y piP
H Trys~ P 3 ? 0pypi + yOPj

IZcs- y op-y (z+h)] - 3 YY 0(PjiP)

H I;. sinf Oe -[Opy ( (1 +~ y p) - 3~(l + y~pi)e-y('P

181r 0 P
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Table 8. HMD Subsurface-to-Subsurface Propagation
Equations (p? p2 + d2 )

1

IAy1  cos *e - [YPY (z+h) I

I 1:

IAy1 sin *e - P) [yopylO~h) -P) yp
iwo1-p 3  [I + -1 + yOfpi)3- [p -y1  ~p (yo

-iw 0 IA cos e- ypy(~ )

21rn~p P1+Yp

-[yOp-y1 (z+h)]
H~-IA sin Oe L) 2p2

3 ( Y3 'O(Pi-P) f[ d2J [I+Y~] YPJ

+A co 1[2O~lZ~ I _ + y + yyp 2 Pe~ 2 p.e1]~ ~4~p2 0 0'/ l

I~psinOe-[y 0p.i -yI (z+h)]

Hl~ (3 + 3y P Y0p )
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EXTENSION TO LARGE NUMERICAL DISTANCES

Image theory also can be utilized to determine the fields at large numer-
ical distances (i.e., 1p[ = 1-y0R 1/2n21 >> 1). For the sake of simplicity, we
will let z = h = 0 and In2! >> 1. For this case, equation (18) reduces to

IZ 1£Cos co I_ 2uo, n2 - 1 (X p)..LdX (45)
:41riwe0 TO ao UI + Uo)\U + n2UO) 0 uO0

Since yip! > 1, u1 - y1 = 2/d, and

(u - i- eu - u0 d (46)

Furthermore, because !pl>> 1,

n2 - ! n2 d -n
2du /2

+n 2u 2- 
(47)

Therefore,

Id cos 0 4 e- n2 du Jo(Xp)dX
- 4nriwE: ( \ 2, )f e04 i £0

ICos 12d2 _Y0 D 
(48)

21ry 'i 0) 2

where D2  P2 + (n2d/2) 2.

Because p2 >> (n2 d/2)2 ,

H -i~~e a cos 27 y ) __0_n2L-S- (i"" ) - 20 10) (49)

I cos O(2)e
-y op

which is the correct farfield result for large numerical distances.
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CONCLUSIONS

Simple engineering expressions for HED and HMD air-to-air, subsurface-to-
air, air-to-subsurface, and subsurface-to-subsurface propagation have been
derived by employing finitely conducting earth-image theory techniques. For
the air-to-air propagation case, the expressions are valid from the quasi-static
to the farfield ranges as long as In2 l > 15 and the Sommerfeld numerical dis-
tance is small. For the subsurface-to-air, air-to-subsurface, and subsurface-

* to-subsurface cases, the additional restriction that the measurement distance
. be greater than three times the burial depth of the source and/or receiver

must be met. We have also demonstrated that image theory can be utilized to
determine the fields at large numerical distances.

We have compared successfully image-theory and exact Sommerfeld integra-
tion results for four cases, yielding agreement within I percent for three
comparisons and within 5 percent for the other.

It should be noted that the two media can be inverted and the air
replaced by the earth's crust (of conductivity a2 and dielectric constant E2)"

The same equations (tables I through 8) can be utilized as long as
I2/2 1 and n2 = y/y > 15 simply by replacing iwe0 by G2 + iWE 2.

The results presented in this report should be particularly useful for
sea/air and sea/earth's-crust propagation. They should also be helpful to
geophysicists engaged in determining the electrical properties of the earth:
The simple, yet accurate, formulas obtained from this theory make it a very
strong tool and a promising one for determining the coupling between antennas
located above or below the earth's surface.

23
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